Quality index for detecting reconstruction errors without knowing the signal in l0-norm Compressed Sensing
نویسندگان
چکیده
INTRODUCTION: Compressed Sensing (CS) ([1], [2], [3], [4]) is a recently created algorithm which allows reconstructing a signal from a small portion of its Fourier coefficients if that signal is sparse in a suitable basis. It was first used by Lustig et al. [5] in MRI, and it has become a popular alternative for speeding up the MRI acquisition processes. In practice, CS has been implemented as an l1-norm minimization or a minimization of continuous approximations of an l0-norm [6], [7]. The correct convergence of those minimization approaches is guaranteed only when the number of acquired samples in the Fourier domain is bigger than a certain quantity that depends on the size of the support of the original signal (the number of non-zero coefficients in the sparse domain of the signal). This constitutes a major problem as the support of the signal is not known, and therefore, there is no information to judge whether the reconstructed signal is correct or not. In this article we present a mathematical index that can discriminate correct from erroneous CS reconstructions (without knowing the original signal), and therefore identify the presence of reconstruction artifacts.
منابع مشابه
Improved k-t FOCUSS using a sparse Bayesian learning
Introduction: In dynamic MRI, spatio-temporal resolution is a very important issue. Recently, compressed sensing approach has become a highly attracted imaging technique since it enables accelerated acquisition without aliasing artifacts. Our group has proposed an l1-norm based compressed sensing dynamic MRI called k-t FOCUSS which outperforms the existing methods. However, it is known that the...
متن کاملImage Reconstruction of Compressed Sensing Based on Improved Smoothed l0 Norm Algorithm
This paper investigates the problem of image reconstruction of compressed sensing. First, an improved smoothed l0 norm (ISL0) algorithm is proposed by using modified Newton method to improve the convergence speed and accuracy of classical smoothed l0 norm (SL0) algorithm, and to increase calculation speed and efficiency. The choice of algorithm parameter is discussed and the algorithm convergen...
متن کاملEvaluation of continuous approximation functions for the l0-norm for Compressed Sensing
INTRODUCTION: Compressed Sensing (CS) ([1], [2], [3], [4]) allows reconstructing a signal, if it can be represented sparsely in a suitable basis [4], from only a portion of its Fourier coefficients. It was first used by Lustig et al. [5] in MRI, and it has become popular for speeding up the acquisition process. Initially, CS was introduced as an l0-norm minimization [1] which is in practice uns...
متن کاملA Hybrid L0-L1 Minimization Algorithm for Compressed Sensing MRI
INTRODUCTION Both L1 minimization [1] and homotopic L0 minimization [2] techniques have shown success in compressed-sensing MRI reconstruction using reduced k-space data. L1 minimization algorithm is known to usually shrink the magnitude of reconstructions especially for larger coefficients [1, 3] and non-convex penalty used in homotopic L0 minimization is advocated to replace L1 penalty [3]. H...
متن کاملA Hybrid L0-L1 Minimization Algorithm for Compressed Sensing MRI
INTRODUCTION Both L1 minimization [1] and homotopic L0 minimization [2] techniques have shown success in compressed-sensing MRI reconstruction using reduced k-space data. L1 minimization algorithm is known to usually shrink the magnitude of reconstructions especially for larger coefficients [1, 3] and non-convex penalty used in homotopic L0 minimization is advocated to replace L1 penalty [3]. H...
متن کامل